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Various novel 3,5a,6,11b-tetrahydro-2H,5H-chromeno[4 ,3 :4,5]thiopyrano[2,3-d][1,3]thiazol-2-ones were
synthesized in 60–80% yields via domino-Knoevenagel–hetero-Diels–Alder reactions of 4-thioxo-1,3-
thiazolidin-2-one with 3,7-dimethyl-6-octenal, 2-allyloxybenzaldehydes and 2-formylphenyl (E)-3-
aryl-2-propenoates with base catalysis. The possibility of stereo- and regioselective cycloaddition was
investigated.

� 2008 Elsevier Ltd. All rights reserved.
S

N
S

O

R

R'

EWG
S

N
O

S

R

R'

EWG

+

Scheme 2.
The creation of molecular complexity and diversity from simple
substrates, while combining economic with environmental aspects
constitutes a great challenge in modern organic chemistry. In this
regard, the development of new domino reaction methodologies is
very important.1–3 This type of reaction minimizes waste, since the
amount of solvents, reagents, adsorbents, and energy is dramati-
cally decreased, compared to stepwise reactions. Often, these dom-
ino reactions are accompanied by dramatic increases in molecular
complexity and impressive selectivity. Many of the reaction prod-
ucts have drug-like structures and might therefore exhibit interest-
ing biological activities.

Tietze et al. reported the domino-Knoevenagel–hetero-Diels–
Alder reaction of unsaturated aromatic and aliphatic aldehydes
with different 1,3-dicarbonyl compounds1–3 (Scheme 1).

Acetylacetone, acetoacetate, 1,3-cyclohexanediones,4 indanedi-
ones, Meldrum’s acid,5 and heterocyclic compounds such as barbi-
turic acids, pyrazolones, isooxazolones, and 1,2,3,4-tetrahydro-2,
4-pyridinedione,6 1,2,6-thiadiazinanedioxide-3,5-dione,7 oxothio-
lane,8 and 1-phenyl-3-indolinone9 can be employed in this type
of reaction. The reaction of heterocyclic and sugar-derived d,e-
unsaturated aldehydes has also been demonstrated.10

In this Letter, we report a new domino-Knoevenagel–hetero-
Diels–Alder reaction. As the methylene component we used 4-thi-
ll rights reserved.

k).

O

+
- H2O

Scheme
oxo-1,3-thiazolidin-2-one 1, which has been described previously
as an excellent reagent for the synthesis of 3,5,6,7-tetra-
hydro-2H-thiopyrano[2,3-d][1,3]thiazol-2-ones via ylidene deriva-
tives11–13 (Scheme 2). Pharmaceutical interest in the abovemen-
tioned compounds appeared after approval of thiazolidinediones
as a separate group of antihyperglycaemics. In addition, several
compounds with antitumor and antioxidant activities among their
fused analogs have been discovered.14–16

The reaction is controlled by the interaction of the HOMO of the
diene and the LUMO of the dienophile (normal electron demand),
and can be activated by lowering the energy of the dienophile-
LUMO by the introduction of electron-withdrawing substituents.
The cycloadditions are also highly regioselective and form products
according to Frontier Orbital Theory.
OO
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Scheme 3. Reactions of 4-thioxo-1,3-thiazolidine-2-one 1 with citronellal 2 and 2-allyloxybenzaldehyde 4. Reagents and conditions: (a) 1 (1.0 equiv), EDDA (0.15 equiv), 2
(1.3 equiv), MeCN, rt, 24 h; (b) 5a + 5b: 1 (1.0 equiv), 4 (1.0 equiv), NEt3 (1.0 equiv), AcOH, reflux, 2 h, 5b:1 (1 equiv), 4 (1.0 equiv), NEt3 (1.0 equiv), AcOH, room temperature,
12 h.17,18
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The first substrate we examined was 3,7-dimethyloct-6-enal
(citronellal) 2 (Scheme 3). Condensation of aldehyde 2 with 4-thi-
oxo-1,3-thiazolidin-2-one 1 in the presence of a catalytic amount
of ethylenediamine diacetate (EDDA) in acetonitrile or acetic acid
at room temperature afforded the corresponding Knoevenagel
adduct intermediate which cyclized via an intramolecular hetero-
Diels–Alder reaction to give the tetracyclic product 3 with excel-
lent selectivity.17 The ene reaction was not observed.

Single crystal X-ray structure determination corroborated the
structure of compound 3 (Fig. 1).19 The hydrogen atoms at the ste-
reogenic C7 and C12 centers have a trans axial–axial orientation.
The torsion angle H7–C7–C12–H12 of �176� reveals an antiperi-
planar conformation for atoms H7 and H12. In the solid state, the
heterocyclic six-membered ring adopts a half-chair conformation
{Cremer and Pople20 puckering parameters: Q = 0.565(2) Å,
h = 129.3(2)�, / = 94.9(2)�}, whereas the carbocyclic ring adopts a
chair conformation {Cremer and Pople puckering parameters:
Q = 0.578(2) Å, h = 2.4(2)�, / = 319(5)�}. The dihedral angles
Figure 1. X-ray crystal structure (ORTEP plot) of 3.
between the least-squares planes of the central ring of the tricyclic
skeleton and the outer five- and six-membered rings were
6.79(7)� and 17.07(7)�. The angle between the outer rings was
21.88(7)�. The C4–C13 bond, 1.337(2) Å, being part of the five-
and six-membered heterocyclic rings, is a double bond. In the
five-membered thiazolone ring, the C2–N3 bond distance,
1.345(2) Å, is somewhat larger than a normal Csp2–N bond
[1.331(2) Å] for c-lactams.21

In the same way, thiazolidinone 1 was condensed with 2-allyl-
oxybenzaldehyde 4 in acetic acid to give tetracyclic hetero-Diels–
Alder cycloadduct 5. In boiling acetic acid the cycloaddition was
not diastereoselective. According to the 1H NMR of the crude mix-
ture, the ratio of trans/cis annulated cycloadducts was 5:1. At room
temperature, we isolated pure (5aRS,11bSR)-3,5a,6,11b-tetra-
hydro-2H,5H-chromeno[40,30:4,5]thiopyrano[2,3-d][1,3]thiazol-2-
one 5b in 80% yield. The configuration of 5b was deduced from the
coupling constant between the 5a and 11b protons (Scheme 3).

Other examples of this reaction using aldehydes 6, 8a,b and
10a,b possessing an allyl moiety as the dienophile are shown in
Scheme 4. Only one diastereoisomer was formed in these reactions.

To further the synthetic scope of this cycloaddition we studied
the reaction of thiazolidinone 1 with 2-formyl-R3-phenyl (E)-3-
phenyl-2-propenoates 12a,b at 80 �C in the presence of triethyl-
amine. The reaction, after usual work-up, gave the corresponding
(5aRS,11bSR)-5-aryl-3,5a,6,11b-tetrahydro-2H,5H-chromeno[40,30:
4,5]thiopyrano[2,3-d]thiazole-2,6-diones 13a,b in excellent
yields.23 The configuration of the protons at positions 5a and 11b
of 7, 9a, 11a, and 13 was deduced from the coupling constants,
compounds 7, 9a, and 11a were trans, whereas 13a, b were cis.
The stereochemistry of the final products of the Diels–Alder reac-
tion depends on the endo- or exo-orientation of the dienophile in
the transition state. In the case of compounds with an allyl moiety
we observed exo transition states. In cinnamyl derivatives 13a,b,
due to secondary orbital interactions, endo transition states
occurred.

The required starting unsaturated aldehydes (Scheme 4) were
prepared through alkylation (6;8a,b;10a,b) of commercially avail-
able salicylaldehyde with 3-chlorocyclohexene, allyl or methallyl
chloride and acylation (12a,b) of salicylaldehyde with 4-chlorocin-
namoyl chloride.
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Preliminary antitumor activity studies were performed24 for
compound 9a according to the NCI (USA) standard protocol.25–27

In summary, we have successfully developed novel, efficient
and stereoselective methods for the synthesis of 3,5a,6,11b-tetra-
hydro-2H,5H-chromeno[40,30:4,5]thiopyrano[2,3-d]thiazol-2-ones
derivatives via a domino-Knoevenagel–hetero-Diels–Alder appr-
oach based on 4-thioxo-1,3-thiazolidine-2-one.
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7.74–7.87 (m, 2H, Ar), 7.97 (d, 1H, Ar), 11.29 (s, 1H, NH). 13C NMR (95 MHz,
DMSO-d6): d 27.3, 28.1, 29.5, 64.5, 105.8, 114.9, 117.5, 118.8, 122.3, 123.5,
126.5, 128.5, 128.6, 129.3, 132.1, 151.0, 170.3. EI-MS (m/z): 327 (M+).
Anal. Calcd for C17H13NO2S2: C, 62.36; H, 4.00; N, 4.28. Found: C, 62.50; H,
4.10; N, 4.40. (5aRS,13cRS)-3,5a,6,13c-Tetrahydro-5a-methyl-2H,5H-naphtho-
[100 ,200:50 ,60]pyrano[40 ,30:4,5]thiopyrano[2,3-d]thiazol-2-one 9b: Yield 75%, mp
>250 �C (AcOH); 1H NMR (400 MHz, DMSO-d6): 1.21 (s, 3H, CH3), 2.94 (d, 1H,
J = 13.8 Hz, SCH2), 3.51 (d, 1H, J = 13.8 Hz, SCH2), 3.91 (d, 1H, J = 10.5 Hz, OCH2),
4.56 (d, 1H, J = 10.5 Hz, OCH2), 4.14 (s, 1H, 13c-H), 6.97–7.91 (6H, C10H6), 10.93
(s, 1H, NH). 13C NMR (95 MHz, DMSO-d6): d 24.2, 29.5, 33.8, 36.1, 68.7, 107.8,
115.0, 117.9, 119.2, 122.8, 124.3, 127.1, 129.3, 129.6, 129.9, 133.1, 150.7, 171.2.
EI-MS (m/z): 341 (M+). Anal. Calcd for C18H15NO2S2: C, 63.32; H, 4.43; N, 4.10.
Found: C, 63.07; H, 4.50; N, 4.14. (5aRS,11bRS)-3,5a,6,11b-Tetrahydro-5a-
methyl-2H,5H-[1]benzopyrano[40 ,30:4,5]thiopyrano[2,3-d][1,3]thiazol-2-one
11a: Yield 71%, mp 294–295 �C (dioxane); 1H NMR (400 MHz, DMSO-d6): 0.87
(s, 3H, CH3), 2.85 (d, 1H, J = 11.7 Hz, 5-H), 3.08 (d, 1H, J = 11.7 Hz, 5-H), 3.89 (d,
1H, J = 9.8 Hz, 6-H), 4.09 (s, 1H, 11b), 4.12 (d, 1H, J = 9.8 Hz, 6-H), 6.86 (d, 1H
J = 7.8 Hz, 8-H), 6.95 (t, 1H J = 7.8 Hz, 10-H), 7.18 (t, 1H J = 7.8 Hz, 9-H), 7.43 (d,
1H, J = 7.8 Hz, 11-H), 11.55 (s, 1H, NH). 13C NMR (100 MHz, DMSO-d6): d 16.3,
33.1, 35.0, 41.4, 74.1, 104.6, 117.6, 121.4, 121.7, 121.8, 128.1, 129.0, 154.5,
170.9. EI-MS (m/z): 291 (M+). Anal. Calcd for C14H13NO2S2: C, 57.71; H, 4.50;
N, 4.81. Found: C, 57.47; H, 4.34; N, 4.92. (5aRS,11bRS)-10-Bromo-3,5a,6,
11b-tetrahydro-5a-methyl-2H,5H-[1]benzopyrano[40 ,30:4,5]thiopyrano[2,3-
d]thiazol-2-one 11b: Yield 69%, mp 229–231 �C (AcOH); 1H NMR (200 MHz,
DMSO-d6): 0.85 (s, 3H, CH3), 2.85 (d, 1H, J = 11.9 Hz, 5-H), 3.08 (d, 1H,
J = 11.9 Hz, 5-H), 3.90 (d, 1H, J = 10.4 Hz, 6-H), 4.12 (s, 1H, 11b-H), 4.14 (d, 1H,
J = 10.4 Hz, 6-H), 6.84 (d, 1H, J = 8.6 Hz, Ar), 7.34 (d, 1H, J = 8.6 Hz, Ar), 7.55 (s,
1H, Ar), 11.61 (s, 1H, NH). 13C NMR (100 MHz, DMSO-d6): d 15.9, 32.4, 34.2,
40.8, 73.8, 102.9, 111.7, 119.0, 121.5, 123.8, 129.7, 130.9, 153.1. 169.8. EI-MS
(m/z): 369 (M+, 79Br), 371 (M+, 81Br). Anal. Calcd for C14H12BrNO2S2: C, 45.41; H,
3.27; N, 3.78. Found: C, 45.15; H, 3.20; N, 3.90. (5aRS,11bSR)-3,5a,6,11b-
Tetrahydro-5-(4-chlorophenyl)-2H,6H-[1]benzopyrano[40 ,30:4,5]thiopyrano[2,
3-d][1,3]thiazol-2,6-dione 13a: Yield 73%, mp 240–242 �C (EtOH); 1H NMR
(400 MHz, DMSO-d6): 3.75 (d, 1H, J = 4.9 Hz, 11b-H), 4.00–4.02 (m, 1H, 5a-H),
5.14 (d, 1H, J = 3.2Hz, 5-H), 7.13–7.18 (m, 2H, Ar), 7.30–7.44 (m, 6H, Ar) 11.66
(s, 1H, NH). 13C NMR (95 MHz, DMSO-d6): d 31.2, 43.3, 43.6, 102.6, 117.4, 121.0,
124.2, 125.6, 128.5, 128.6, 129.2, 129.5, 130.4, 140.0, 150.5, 166.7, 170.9. MS
(m/z): 401 (M+). Anal. Calcd for C19H12ClNO3S2: C, 56.78; H, 3.01; N, 3.49.
Found: C, 56.87; H, 3.12; N, 3.32. (5aRS,11bSR)-10-Chloro-5-(4-chlorophenyl)-
3,5a,6,11b-tetrahydro-2H,6H-[1]benzopyrano[40 ,30:4,5]thiopyrano[2,3-d][1,3]-
thiazol-2,6-dione 13b: Yield 77%, mp 277–279 �C (EtOH); 1H NMR (400 MHz,
DMSO-d6): 3.78 (d, 1H, J = 5.9 Hz, 11b-H), 3.83–3.86 (m, 1H, 5a-H), 5.08 (d, 1H,
J = 3.9Hz, 5-H), 7.12 (d, 1H, J = 7.8 Hz Ar), 7.34–7.40 (m, 4H, Ar), 7.44 (d, 2H,
J = 7.8 Hz Ar), 11.53 (s, 1H, NH). MS (m/z): 435 (M+). Anal. Calcd for
C19H11Cl2NO3S2: C, 52.30; H, 2.54; N, 3.21. Found: C, 52.44; H, 2.65; N, 3.03.

24. Compound 9a was evaluated toward a three human tumor cell line panel and
showed the following growth percent values: at NCI-H460 cell line (Non-Small
Cell Lung Cancer)—3%, MCF7 (Breast Cancer)—25%, and SF-268 (CNS Cancer)—
31%. Therefore substance 9a which reduced the growth of the cell lines to 32%
or less was passed on for evaluation in the full panel of 60 human tumor cell
lines. Compound 9a showed the highest antitumor cytotoxicity against
leukemia cell lines MOLT-4 (LogGI50 = �4.08) and RPMI-8226 (LogGI50 =
�4.70), as well as the melanoma cell line SK-MEL-2 (LogGI50 = �4.27). These
preliminary results are promising and need further investigation of the
antitumor activity of reported and related compounds.

25. Monks, A.; Scudiero, D.; Skehan, P.; Shoemaker, R.; Paull, K.; Vistica, D.; Hose,
C.; Langley, J.; Cronise, P.; Vaigro-Wolff, A. J. Nat. Cancer Inst. 1991, 83,
757–766.

26. Boyd, M. R.; Paull, K. D. Drug Dev. Res. 1995, 34, 91–109.
27. Monks, A.; Scudiero, D. A.; Johnson, G. S.; Paull, K. D.; Sausville, E. A. Anticancer

Drug Des. 1997, 12, 533–541.


	A new domino-Knoevenagel-hetero-Diels-Alder domino-Knoevenagel-hetero-Diels-Alder reaction
	AcknowledgementAcknowledgments
	References and notes


